Code: 20EC6501

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DIGITAL ELECTRONICS DESIGN WITH VHDL (HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Explain AND, OR, NOT & NAND gates	L2	CO1	7 M			
		using VHDL program.						
	b)	Analyze composite types with neat	L4	CO2	7 M			
		examples of digital state machine.						
OR								
2	a)	Explain constant declarations and signal	L2	CO1	7 M			
		declarations.						
	b)	Analyze 4-bit subtractor using VHDL code.	L4	CO2	7 M			
UNIT-II								
3	a)	Explain variable and signal assignment	L2	CO1	7 M			
		statements with an example each.						
	b)	Design 2 to 4 decoder and model using	L3	CO3	7 M			
		VHDL.						
OR								

	1							
4	a)	Explain signal drivers with suitable VHDL	L3	CO1	7 M			
		example programs.						
	b)	Model VHDL code for 4:1 multiplexer.	L3	CO3	7 M			
UNIT-III								
5	a)	Model reminder calculator for any four	L3	CO1	7 M			
		different integers using VHDL function.						
	b)	Using VHDL function, model the area of	L3	CO3	7 M			
		circle with an example.						
OR								
6	a)	Using VHDL function model binary to	L3	CO1	7 M			
		integer converter for simulation.						
	b)	Using a VHDL function model mean	L3	CO3	7 M			
		calculator for simulation.						
UNIT-IV								
7	a)	Design a Mod 16 synchronous up counter	L3	CO1	7 M			
		and model using behavioural VHDL						
		modelling.						
	b)	Model VHDL code and draw synthesized	L3	CO3	7 M			
		circuit for case statement.						
		OR						
8	a)	Model JK Flip-flop using behavioural	L3	CO1	7 M			
		VHDL modelling.						
	b)	Design state machine for odd parity detector	L3	CO3	7 M			
		of a serial line.						

UNIT-V								
9	a)	Design and Analyse architecture of CLB in	L3	CO1	7 M			
		FPGA.						
	b)	Implement the circuit for Half adder using	L3	CO4	7 M			
		PAL.						
OR								
10	a)	Design and model 2:1 Mux using FPGA.	L3	CO1	7 M			
	b)	Explain XILINX 4000 series FPGA.	L2	CO4	7 M			